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EXECUTIVE SUMMARY

Classification applications require the extraction of class discriminative information.
However, this step often leads to high-dimensional feature spaces, which requires large datasets
to create viable classification schemes. This study presents follow-on work to those of Duzenli
[DUZ98] and San Pedro [SANOO], and considers two discriminant-based feature dimension
reduction schemes for classification applications. The two feature reduction schemes considered
are the Mahalanobis-based dimension reduction (MBDR) scheme recently proposed by Brunzell
[BRE99], and the kernel-based generalized discriminant analysis approach (GDA) proposed by
Baudat & Anouar [BANOO]. The GDA is part of a new breed of kernel-based algorithms that are
currently being considered by the research community to develop new learning techniques, as
they can be used to derive nonlinear generalizations of currently known algorithms. Finally, the
classical PCA and the MSNN proposed earlier in [DUZ98] are included in this study for
comparison purposes.

The four feature dimension reduction schemes considered were implemented in
MATLAB and evaluated by applying the transformed features to a basic minimum distance
classifier. Performances are evaluated by applying these schemes to three datasets commonly
used in statistics for benchmarking purposes. Results show overall best results to be obtained for
the GDA for the datasets considered. Results also show there is no consistent second best feature
reduction scheme among the MSNN, the MBDR, and the PCA, as performances for these three

schemes are data dependent.

iii




I. INTRODUCTION

A. BACKGROUND

This work presented in this report is part of a larger scale study conducted during 1999

and 2000 where we investigated various feature extraction and dimension reduction schemes,

and their application to the classification of digital modulation types. The overall study was

divided in three separate phases.

The first phase of the overall study investigated extensions to the MSNN approach originally
derived in 1998 [DUZ98] to include variance information in the optimization criterion.
Results obtained with synthetic data and basic communication schemes were presented in
San Pedro [SANOO]. Results showed no significant improvements over the original MSNN
for the data investigated.

The second phase of the overall study, which this report specifically focuses on, investigated
two new feature dimension reduction schemes and their resulting performances on
benchmarking datasets.

The third phase of the overall study investigated the application of a selected few higher-
order statistic parameters to the classification of digital modulation schemes of types [2,4,8]-
PSK, [2,4,8]-FSK, and [16,64,256]-QAM in low SNR levels and multipath propagation
channel environments. A hierarchical tree-based classifier was proposed and its

performances studied over various types of propagation channels [FAHO1, HATO1].

B. OBJECTIVES

Extracting relevant features that allow for class discrimination is the first critical step in

classification applications. However, this step often leads to high-dimensional feature spaces,




which requires large (and potentially not available) datasets to create viable classification
schemes. In addition, some of the features may carry little useful information or be correlated
with others resulting in redundancies in the feature space. As a result, there is a strong incentive
to reduce the feature space dimension. Two classical types of approaches to reduce feature
dimension exist: Principal Component Analysis (PCA)-based or discriminant-based approaches.
The main difference between the two types lies in the criterion selected; PCA-based schemes
seek a projection direction which bests represents the data in a norm sense, while discriminant-
based schemes seek a projection that best separates the class data [DHSO1]. We proposed in
earlier work a simple discriminant-based feature dimension reduction scheme called the Mean
Separator Neural Network (MSNN). The MSNN belongs to the class of projection pursuit
algorithms, where the goal is to find a projection direction that emphasizes class discrimination
[BIS95]. Results showed the MSNN scheme to have very good performances for the underwater
data considered during this earlier study [DUZ98, DFA98, FDU98]. The MSNN approach can
be viewed as a one-layer neural network (NN) implementation where the goal is to find the
projection index, i.e., the weight vector, which maximizes the absolute difference between the
means of the projected class data. As a result, it suffers of the same drawback as that present in
numerous other NN implementations: the iterative procedure is not insured to converge to the
global minimum due to the nonlinear activation function present in the optimization criterion.
While the “local minima” issue was shown not to be a problem for the data investigated in our
earlier study, it motivated this follow-on work where we investigate two alternate discriminant-
based dimension reduction schemes which do not exhibit such a behavior.

The two feature reduction schemes considered are the Mahalanobis-based dimension

reduction (MBDR) recently proposed by Brunzell [BRU97], and the kernel-based generalized




discriminant analysis (GDA) proposed by Baudat & Anouar [BANOO]. In addition, we
benchmark these two schemes against the classical PCA approach, and the MSNN scheme.
Chapter II briefly reviews the PCA approach, as applied to classification applications.
Chapters III and IV present the Mahalanobis-based dimension reduction approach and kernel-
based generalized discriminant schemes respectively. The basic MSNN scheme is described in
Chapter V. The four feature dimension reduction schemes considered in this study are
implemented in MATLAB and evaluated by applying the transformed features to a basic
minimum distance classifier. Three classification datasets commonly used in statistics for
benchmarking purposes are selected to compare the schemes and results discussed in Chapter VL

Finally, Chapter VII presents conclusions.




II. PRINCIPAL COMPONENT ANALYSIS

A. INTRODUCTION

Principal Component Analysis (PCA) is one possible approach to reduce the
dimensionality of the class features under consideration. The method projects high-dimensional
data vectors onto a lower dimensional space by using a projection which bests represents the data
in a mean square sense, i.e., leads to projected data vectors which preservé most of the energy
contained in the original data [DHSO01, BIS95]. This linear dimension reduction scheme uses the
Karhunen-Loeve transformation which represents a given data vector as a linear combination of
the eigenvectors obtained from the data covariance matrix. As a result, lower dimensional data
Vectbrs may be obtained by projecting the high-dimensional data vectors onto a user-specified
number of eigenvectors associated with the largest eigenvalues of the data covariance matrix.
PCA is widely used in engineering applications such as for example in compression as it
preserves most of the original overall data information, and in statistics where it can be applied
to decorrelate data prior to processing, etc.... However, the PCA projection criterion is not
necessarily well designed for classification applications where the goal is to best discriminate
between classes, not preserve most of the energy in a lower dimensional class feature space.
Nevertheless it is a classical tool applied extensively, and we will use it in our comparison of the

various dimension reduction schemes considered in this study.

B. DESCRIPTION

The PCA maps an ensemble of P N-dimensional vectors X=/x;,....,xp] onto an ensemble
of P D-dimensional vectors Y=[y,, ...,yp] where D<N using a linear transformation which can be

represented by the rectangular matrix A so that:




)’i=AH£;, i=1,.,P, (2.1)
where A has orthogonal column vectors. For PCA, the matrix A is selected as the P*D matrix
containing the D eigenvectors associated with the larger eigenvalues of the data covariance

matrix X”X. With such a choice of transformation matrix A, the transformed data vectors yi have

uncorrelated components as:

o
o
o

where A,,i=1,...D, are the eigenvectors of the data covariance matrix XX, The concept of PCA

is illustrated next by considering three classes of two-dimensional data, as shown in Figures II-1
and II-2, where the data dimension is to be reduced to one. The transformation matrix A is of
dimension 2*1, and the projected data sets lie on a line. Figures II-1 & II-2 show that the PCA
projection direction preserves most of the signal energy but also generates projected data with

significant amount of overlap between two of the projected class data.




two-dimensional class features and one-dimensional PCA projections
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Figure II-1. Two-dimensional PCA projection, example 1.
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Figure II-2. Two-dimensional PCA projection, example 2.




III. MAHALANOBIS-BASED DIMENSION REDUCTION

A. INTRODUCTION

As shown earlier, PCA may not be well suited to reduce feature dimension in
classification applications where the main goal is to preserve class discrimination. Fisher’s
linear discriminant (LDA) introduced by Fisher is better suited as it seeks a projection direction
which best discriminates between the classes considered [FUKO90, DHSO01].  Fisher’s
discriminant was initially derived for the two-class problem and extended later to the more than
two-class problem. The Fisher projection index for the 2-class problem is derived as the direction

that maximizes the following ratio:

!
wSyw

J(w) = 3.1

wS,w

w

The matrices Sg and Sw respectively represent the between-class and within-class scatter

matrices defined as:

2

Sg = (m, —m,)m, ~m,)", S, =Zzi’

i=1

where m; and m, respectively represent class-specific means for classes C; and C, and

2.,i=1---,2,are the class-specific data covariance matrices for the two classes under

consideration. As a result the projection criterion aims at maximizing a ratio of the separation
between projected class data and the projected class-specific data variance information, thereby
preserving discrimination information between the two classes considered. It can be shown that
the criterion function J(w) may be maximized by finding the projection vector w which satisfies
the following generalized eigenvalue problem [DHS01, FUK90]:

Spw=AS, w,




which leads to

w=S8 (m, —m,). (3.2)

The Fisher Linear Discriminant can be extended to a higher number of classes (called the
Multiple Discriminant Analysis (MDA) approach) by generalizing between-class and within-
class scatter matrices to the more than two classes problem [DHS01, FUK90].

The feature dimension reduction proposed by Brunzell [BRU97, BRE99] follows the
same basic concept as that present in the MDA; that is to find a linear projection that preserves
the separation between classes. However, Brunzell proposes to accomplish the task by defining
a pairwise Mahalanobis class distance measure and stacking all possible pairwise Mahalanobis-
based distances into a transformation matrix, so the name Mahalanobis-based Distance
Reduction (MBDR) approach. The MBDR approach and the Fisher Linear discriminant are
identical for the two-class problem and the difference between the two schemes lies in the
generalization to the more-than-two-classes problem, where the MBDR scheme preserves the
pairwise approach while the MDA does not. Brunzell showed that his proposed transformation
preserves the separation between classes. Performance evaluations of the MBDR feature
dimension reduction scheme were conducted by applying the proposed scheme to seven datasets
widely used in classification benchmarking, where the data dimensions are reduced to two and
classification performances obtained with a basic quadratic classifier computed. Brunzell
showed that classification performances obtained using the MBDR scheme are as good or better
than the basic and variants of the Fisher LDA approach on the benchmarking data sets
considered. As a result, we will consider the MBDR approach and not the basic LDA

implementation in our classifier performance comparisons.



B. DESCRIPTION

The Mahalanobis-Based Dimension Reduction (MBDR) transformation matrix proposed

by Brunzell is defined as:

U =[Climyye,Clim, oo, €l om, ], for1<i< j<e, (3.3)

i, i s e e Mhent e

where C;; are pairwise covariance matrices defined as C, j =%; +%;, m; are pairwise class-
specific mean vector differences defined as m, ; =m, —m,, and c represents the total number of

classes. The feature dimension reduction scheme is applied by computing the SVD of the matrix
U and selecting as transformation matrix that which contains the first k singular vectors
associated with the k largest singular values of U.

Applying the MBDR matrix to the data considered in Figures II-1 & II-2 leads to Figure
II-3 & II-4. Results show the projection direction much better suited to preserve class

discrimination than PCA is, as expected from similarities to the LDA approach.
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Figure II-3. Two-dimensional MBDR projection, example 1.
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IV.KERNEL-BASED GENERALIZED DISCRIMINANT ANALYSIS

A. INTRODUCTION

LDA is a classical scheme well matched to classification applications as it preserves class
discriminations. However, it may fail when the problem under consideration contains non-
separable class information. A significant amount of research has been conducted recently in the
area of kernel-based approaches to address non-separable class problems. The main idea behind
kernel-based methods is to nonlinearly transform the input feature space into a higher-
dimensional space in which the transformed features are separable. Nonlinear transformations
are nothing new on themselves, however, most of the earlier ones involve computations in the
transformed space for the resulting classification set-up. The main advantage behind the kernel-
based generalized discriminant analysis approach is the fact that all computations may be carried
out in the original space by expressing the nonlinear transformation in terms of dot products
only. Such a reformulation of the problem leads to the computation of a class separating
hyperplane with maximum margin without explicitly carrying the transformation of the features.
It also leads to a nonlinear decision boundary in the original feature space. Such nonlinear
transformations have been known for sometimes but not taken advantage of until Vapnick
presented the support vector machines (SVM) approach [VAP95, CHS00]. Since then, several
nonlinear generalizations of algorithms have been proposed; kernel-PCA [SSM99, SSM98,
TRCO1, MSS99], kernel-based denoising [MSS99], kernel-based LDA [MRW99a, MRW99b,
BANOO], etc... Applications can be found in image processing [EPP00, CHV99], pattern
recognition [GSO00, MAE99, HAE99], text categorization [TKO99], speech processing
[NBROO], time series prediction [MSR97], radar imagery [LCBO0O0], etc... and results have

shown in some cases a significant improvement in classifier performances over more established
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methods. Our study is restricted to the nonlinear generalization of LDA called the generalized

discriminant analysis (GDA) only.

B. DESCRIPTION

The GDA is an extension of the LDA where the LDA criterion is defined in the
transformed space. However, computations are carried out in the original feature space by
reformulating the GDA criterion in terms of dot products of the nonlinear transformation

operation. Recall that the basic LDA projection index is defined as the direction that maximizes

the following ratio:

J(w) =L @n
ESWE

where Sp and Sy respectively represent the between-class and within-class scatter matrices.

N
Assume that we have N classes with n; samples per class C, i.e., zn,. =M, where M is the

i=1
total data sample size. Further, assume that x is nonlinearly transformed into a different space °
with a mapping ¢:
9. X>F
X = 9(x).
The covariance matrix of the transformed data ¢(x)is given by:
1 & :
V=2 0 (x), 4.2)
i=1

assuming the transformed data ¢(x) is zero-mean. The data can be centered by following the

procedure presented by Baudat & Anouar if it is not centered originally [BAN0O, Appendix C].

Using class indices, (4.2) may be rewritten as:

n

1 & :
V= Xiz O(x, 0 (x), (4.3)

i=] k=]

where @(x, )is the element & of class i.

12




Next, the covariance matrix of the class centers may be written as:
1 & = =
B=—> 10,0, (44)
M
where ¢, represents the mean value for class C; defined as:

— 1 &
P, :;'Z¢(Eki)’

k=l
with x;; representing the i sample of class C,. The key behind the GDA approach is to express

the LDA criterion given by Eq. (4.1) in the transformed space as:

v' By
Jw)=£2%,
vVy

4.5)
where B and V are defined in Egs. (4.3) & (4.4). The criterion is maximized when v is selected as
the eigenvector associated with the maximum generalized eigenvalue associated with (B,V)

[DHSO1]. Note that the eigenvectors y may be written in terms of the elements in the

transformed space F. Thus,

N
v=>Ya, bx,). (4.6)

Replacing v by its expansion given in Eq. (4.6) into Eq. (4.5), Baudat and Anouar show that the

projection index J(.) may be rewritten as [BANOO]:

o' KWKo

!

J(@) =
o KKa

@.7

The matrix X is of dimension M«M and is defined on the class elements by the blocks K}, each of
dimensions np«n, . Each block matrix K, is composed of dot products in the transformed feature
space F. Thus:

K =(Kpp)peton> With K = (k) iy » (4.8)

g=1,-N I RN
where for given classes p and q the elements k; are defined in terms of dot products of the

nonlinear transformation, i.e.,

13




(klj )pq = ¢t (Epi )¢(_‘.x_qj )'
The matrix W is a block diagonal matrix of dimension M«M where each block W, [=1,..,N is of

dimension np«n; and defined as:
W,==—|: - |, I=1L---N. 4.9

Baudat and Anouar show that the above generalized eigenvector problem may be simplified and
reformulated as [BANOO]:
AB=PWPp. (4.10)
Therefore, the GDA problem becomes to find the eigenvector E defined in terms of the

eigenvector & as [ =TP'a, where P and T are the eigenvector and eigenvalue matrices of K
g (24 [24 g g

respectively. The eigenvector & may be computed back from _,Q by the transformation
a=T"P é One of the potential drawbacks in the GDA is the computational load involved in
computing the matrix inverse ', as T is of dimension M:M, where M is the dataset size.

However, computationally efficient alternatives have been reported in [MMROI1, LROOI,

KMW]. Our implementation computes the inverse I'""' with a reduced-rank pseudo-inverse to
avoid ill-conditioning problems.
Transformations with Gaussian and polynomial kernels have been used extensively in

kernel-based implementations [CHS00, HEA99, MMRO1, BUR98]. We selected the Gaussian
kernel k(x,y) :exp(—"gg— _y_”2 /c), with variable spread c¢ in this study and implemented the

GDA using MATLAB. One important issue is the specific selection of the spread that affects the

classification performance, and Muller et. al. address the model selection issue in their tutorial

14




[MMRO1]. However, an automated selection of the spread ¢ was beyond the scope of this study,

and ¢ was determined by trial and error in our simulations.

15




V. MEAN SEPARATOR NEURAL NETWORK

The Mean Separator Neural Network (MSNN) proposed by Duzenli & Fargues belongs

to the class of projection pursuit algorithms [DUZ98, DFA98, DUF98]. The basic MSNN

implementation is defined to differentiate between two classes {x;} and {y;}. It iteratively looks

for a one-dimensional nonlinear projection direction of the feature space that maximizes the

mean difference of projected class data means, for a user-specified nonlinear activation function

®(.). As aresult, the mean difference criterion MD(.) to be maximized is defined as:
2

MD(w)=~(E[®(w » |- E[ o' y) ) (5.1)

where w is a column weight vector. The scheme can be viewed as a one-layer back-propagation
neural network (BPNN) implementation with one processing element. The MSNN was
implemented using the nonlinear logsig function for activation function and gradient descent
with variable learning rate [DUZ98]. The scheme was extended to classify more than two
classes by reformulating the overall problems as a set of pairwise sub-problems [DUZ98].
Results showed the MSNN to lead to similar or better classification performances than more
computational expensive BPNNs, and significantly higher classification performances than
obtained with classification trees on the data investigated. Further details regarding these
comparisons may be found in Duzenli [DUZ98]. Note that the MSNN implementation suffers of
the same drawback as that present in other BPNN implementations: the iterative procedure is not

insured to converge to the global minimum as a result of the nonlinear activation function ®()

used in the projection criterion definition. Therefore, we run the MSNN a few times with
different initial conditions and selected the weight vector w leading to the best training

performances in our simulations.

16




Extensions to the basic MSNN algorithm were considered by San Pedro who
investigated the following projection criterion that takes into account both mean differences and
variance of the projected data:

(<ot fow )]

MD,(w) =~ var [(I)(mt ?ﬁ)] + var[CP(V_VtZ)] .

(5.2)

In this case, the goal becomes to maximize a ratio of the projected class means over the projected
class variances. The criterion MD,(.) may be viewed as ‘a nonlinear implementation of the
pairwise Fisher Linear Discriminant. However, this approach cannot be solved using eigen-
properties any longer, due to the nonlinear activation function ®(.), and an iterative procedure is
required to maximize the projection criterion MD(.). Various stopping criteria and slightly
modified versions of the projection criterion and data set-up were also investigated in San Pedro
[SANOO]. However, Aresults showe_d no significant classification performance improvements of
the extensions with respect to the basic MSNN implementation on the data investigated for the
nonlinear transformations considered. Therefore, we considered only the basic MSNN

implementation with pairwise coupling in this benchmarking study.
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VI. CLASSIFIER PERFORMANCES COMPARISON

A. DATA DESCRIPTION

The MSNN, PCA, MBDR, and kernel-based GDA approaches were implemented in
MATLAB and applied to the following three classification problems, commonly used in
statistics for benchmarking purposes, to evaluate the performances of the feature dimension
reduction algorithms. All datasets were obtained from [MLD] and further details describing the
feature characteristics and statistics of each dataset can found there.

1. Iris data: One of the typical benchmarking data sets selected to investigate the
performance of a classifier when dealing with nonlinearly separable data is the IRIS
dataset [MLD]. This dataset has three classes with four-dimensional features, where
two of the classes are not linearly separable, while the third class is linearly separable
from the other two. Twenty-five trials per class were selected for training and for
testing respectively.

2. Handwritten Digits data: This dataset contains attributes representing normalized
bitmaps of handwritten digits from a preprinted form. The dataset had 10 classes and
64 features normalized in the range [0,16]. 87 trials per class were selected for
training and for testing respectively.

3. Spam E-mail data: This dataset contains attributes indicating whether a specific e-
mail can be considered as spam or non-spam e-mail. The dataset has two classes
(spam and non-spam type) and 57 features per trial. Most of the features indicate
whether a particular word or character was frequently occurring in the e-mail, and
further details regarding each individual feature can be found in [MLD]. 227 trials per

class were selected for training and for testing respectively.
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B. CLASSIFIER SET-UP

Once the feature dimensions are reduced to a desired user-selected size, classification of
the data is obtained by applying the basic minimum distance classifier described next. First, the
training dataset is used to obtain the mean values for class-specific transformed feature vectors.
Such class-specific feature vectors are selected to represent each class and are called class-
specific mean feature vectors. During testing, unlabelled feature vectors are compared against
each class-specific mean feature vectors, and class decision made by selecting the class which
leads to the smaller distance between the unlabelled feature vector and all class-specific mean
feature vectors.

We varied the size of the projection, i.e., the size of the reduced dimension features, for
PCA and MBDR schemes to evaluate the sensitivity of the feature reductior; algorithm to the
dimensionality of the projection. Such a variation is not possible for the MSNN algorithm, as it
implements a fixed one-dimensional projection. However, we run the MSNN algorithm several
times for each training dataset starting the iteration with different random initial values each time
in an effort to mitigate the local minima issue discussed earlier, and selected the weights leading

to the best training dataset classification performances.

C. RESULTS

Figures VI-1 to VI-3 present the overall classification results obtained with the various
dimension reduction schemes followed by the minimum distance classifier. Overall classification
performances both for training and testing sets are showed to evaluate any potential

generalization issues. Corresponding confusion matrices are included in the Appendix.
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1. IRIS Data

Figure VI-1 presents the overall classification performance obtained for the IRIS
dataset. Recall that this dataset has a relatively low-dimensional feature dimension to start with,
and that it was selected because two of the classes (C, and Cj) are not linearly separable, while
the third class (C) is linearly separable from the other two. Results show the GDA approach is
successful in separating the two nonlinearly separable classes while the MSNN is not. Two
different implementations of the GDA with siightly different overall classification performances
are shown: Kernel-1 and Kernel 2.

Kernel-1: spread value c equal to 1.5 and reduced rank for the pseudo inverse of
I" equal to 75 (full matrix size),

Kernel-2: spread value ¢ equal to 1 and reduced rank for the pseudo inverse of T°
equal to 20 (by visual inspection of the eigenvalue spread for T').

Simulations showed that large variations in the spread value may result in significant
classification performance differences '(w>her'1 fhe spread is selected too large or too small for the
data under investigation). Results also showed the specific selection of the reduced rank value
might have some impact on the classification performances. However, no extensive study was
conducted, and further study is required to validate these findings. The results presented here
show some slight differences due to small variations in the spread and the pseudo rank of T".

The PCA, LDA and MBDR approaches based on a two-dimensional projection of the
features show a few classification errors for data in class C, and C; resulting in 8% overall
classification errors.

2. Handwritten Digits Data

Figure VI-2 presents the overall classification performance obtained for the

handwritten digit dataset. Recall that this dataset has a relatively high-dimensional feature
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dimension to start with (60 features). Results show the best performance is obtained for the

kernel-based implementation, followed by PCA (when the projection dimension is larger than

10), the MSNN, and finally the MBDR approach. A few comments are in order.

MSNN performances vary from run to run due to the local minimum issues
inherent in this algorithm, and two different runs are shown here: MSNN-t1 and
MSNN-t2, where the difference lies in the random initial values selected during
the training phase. This result also further highlights the fact that the MSNN
should be run a few times on a given training data, and the version leading to the
best performances selected in an effort to minimize this drawback.

The PCA feature dimension reduction process clearly degrades the discrimination
quality of the class features, as the classification performances degrade with
decreasing feature size (projected features of dimension 2, 10, 20, 30 are shown
here). Simulations showed classification performances to be identical for
dimensions 30 to 40. This result also highlights a well-known problem of PCA
when applied to classification applications; that is the dimension reduction
criterion is not necessarily designed to preserve class discrimination information.
The MBDR scheme also degrades the discrimination quality of the class features,
as classification performances decrease with decreasing feature sizes (two-, and
four-, and ten-dimensional projections are reported here). Simulations showed
performances to be identical for projection sizes between 4 to 8.

Simulations showed the kernel-based implementation (using a four-dimensional
projection) clearly leads to the best classification performances of all the schemes

considered for this dataset.
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3. SPAM E-mail Data

Figure VI-3 presents the overall classification performance obtained for the SPAM e-
mail dataset. Recall that this dataset has a relatively high-dimensional feature dimension to start
with (57 features) and only two classes. Results show the best overall classification performance
is obtained for the kernel-based implementation, followed by the MBDR scheme, the MSNN
implementation, and finally by various implementations of the PCA (where 2, 10, 20, and 30-
dimensional projections were investigated). A few comments are in order.

e A one-dimensional projection for the MBDR approach was selected as only as

only one eigenvalue of the matrix U defined earlier in Eq. (3.3) was non zero.

e Simulations showed the PCA feature reduction schemé has the worst
classification performances of all schemes considered, and that no improvements
are observed by increasing the transformed feature space dimension from 10 to
40.

e The best overall classification performance was obtained with the kernel-based

classifier followed by the MSNN implementation and the MBDR scheme.
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Figure VI-1. IRIS dataset; Overall Classification Error Performance
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Figure VI-2. Handwritten Digits dataset; Overall Classification Error Performance
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Figure VI-3. SPAM E-mail dataset; Overall Classification Error Performance
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VII. CONCLUSIONS

Classification applications require the extraction of class discriminative information.
However, this step often leads to high-dimensional feature spaces, which requires large datasets
to create viable classification schemes. This study presents follow-on work to [DUZ98, SAN(0]
and considers two discriminant-based feature dimension reduction schemes for classification
applications. The two feature reduction schemes considered are the Mahalanobis-based
dimension reduction (MBDR) scheme recently proposed by Brunzell, and the kernel-based
generalized discriminant analysis approach (GDA) proposed by Baudat & Anouar. The GDA is
part of a new breed of kernel-based algorithms that are currently being considered by the
research community to develop new learning techniques, as they can be used to derive nonlinear
generalizations of currently known algorithms. Finally, the classical PCA and the MSNN
proposed earlier in [DUZ98] are included in this study for comparison purposes.

The four feature dimension reduction schemes considered were implemented in
MATLAB and evaluated by applying the transformed features to a basic minimum distance
classifier. Performances are evaluated by applying these schemes to three datasets commonly
used in statistics for benchmarking purposes. Results show overall best results to be obtained for
the GDA for the datasets considered. Results also show there is no consistent second best feature
reduction scheme among the MSNN, the MBDR, and the PCA, as performances for these three
schemes are data dependent.

Note that our investigation of the generalized discriminant‘ approach (GDA) remains
preliminary in nature as our study was restricted to the Gaussian kernel case only, and issues
regarding the specific selection of a kernel type were not addressed. In addition, we did not

consider issues regarding the specific selection of the spread factor for the Gaussian kernel.
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Further investigations addressing these two issues would be needed to complete the study of the

GDA behavior. Nevertheless, results are very promising as they show best overall results for the
datasets considered to be obtained with the GDA. However, the GDA is also potentially the most
computationally intensive of the four schemes considered, depending on the size of the data
considered.

Finally, investigating the applicability of the GDA approach to the classification of
digital modulation types, and comparing the resulting performances to those obtained using the
higher-order statistics based hierarchical approach discussed in [HATO01, FAHO1] is left for

further study.
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APPENDIX

This Appendix contains confusion matrices obtained for training and testing sets for the
three datasets [MDL] selected to benchmark the feature reduction schemes considered in this
study

1) Digit Data: 5 classes identified by 60 features per trial, 87 trials in training and testing

datasets.

2) IRIS Data: 3 classes identified by 4 features per trial, 25 trials in training and testing

datasets.

3) Spam e-mail Data: 2 classes identified by 57 features per trial, 227 trials in training

and testing datasets.
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DIGIT DATA

CLASSIFICATION
SCHEMES

GDA
Kparam=1000;
Tol=.001
(4—dim projection)

MBDR
(2-dim projection)

MBDR

(4-dim projection)
to

(8-dim projection)

MBDR
(10-dim projection)

PCA
(2-dim projection)

Training Data Results
Errorrate | Labeled data belonging to
0% Class:
1 213415
Data 1187 (0 {0 [0 |0
identified | 2|0 |87 |0 |0 | O
asClass: | 3]0 |0 |87 [0 |0
> 410 [0 |0 |87 ]0
510 {0 (0 |O |87
Errorrate | Labeled data belonging to
44% Class:
1 2131415
Data 1184 (2 [30]18
identified | 210 |36 {14 | 4 18
asClass: | 3|0 16 124 | 29
> 413 |2 ]12 (360
500 13117 |0 |69
Errorrate | Labeled data belonging to
16% Class:
1 2131415
Data 1187 {0 |0 |1 |0
identified { 2) 0 {72 |0 |1 |5
asClass: | 3]0 1 68 |20 |0
> 410 |10 [ 19 [66 |1
511 0 |0 |80
Errorrate | Labeled data belonging to
6.21% Class:
1 2 13]4]5
Data 1/]87 |0 |2 |0 1
identified [ 2] 0 |78 {0 |0 |12
asClass: | 3]0 [9 [8 10 |3
> 410 {0 |0 |8 (0
510 1|0 {0 |JO |71
Error rate | Labeled data belonging to
Class:
14.48%
) 1 2[3]4]s
Data 1{86 {1 0 |0O 1
identified | 2J0 |72 10 [1 |5
asClass: | 3]0 1 68 {200
> 410 [10]19 |66 |1
511 3 0 |80
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Testing Data Results
Errorrate | Labeled data belonging to
091% Class:
1 2131415
Data 187 |0 |0 jO |O
identified [ 2] 0 |87 |1 0 0
asClass: [3]0 |O [8 |0 |0
> 410 [0 (0 [87]1
500 |0 |1 0 |86
Errorrate | Labeled data belonging to
5% Class:
1 2131415
Data 1178 {03 (44 |20 |0
identified | 2] 1 26 | 6 1 31
asClass: [3]1 |16 [15(32]0
> 417 | 4 13 13310
510 [38 (9 1 |56
Errorrate | Labeled data belonging to
24% Class:
1 2 | 3{4]|35
Data 1186 |0 [0 1 0
identified | 2} 0 |72 |7 |0 |15
asClass: 3]0 [1 |63 (7 [0
> 410 [11 {1779 ]2
511 0 |0 |70
Errorrate | Labeled data belonging to
Class:
10.80%
0 1 [2[3[4a]s
Data 118 |0 [5 1 10
identified | 2} 0 | 67 | 1 1 12
asClass: [ 3]0 |19 |77 [0 [2
4 410 0O |8 {0
511 1 |4 |0 |73
Errorrate | Labeled data belonging to
Class:
14.94%
’ 1 [2]3[4a]s
Data 118 [0 |0 1 0
identified | 2J0 [72 |7 [0 |15
asClass: | 3]0 1 6317 |0
> 4]0 |11 [17 179 (2
511 0 10 [70




IRIS DATA

CLASSIFICATION
SCHEMES

GDA
Kparam=1; Tol=.001;
ng=20
(3—dim projection)

GDA
Kparam=1.5; Tol=.001;
ng=75
(3—dim projection)

MBDR
(2-dim projection)

PCA
(2-dim projection)

MSNN

Training Data Results

Error rate: Labeled data belonging
1.33% to Class:
1 2 3
Data 1 25 0 0
identified as 2 |0 24 1
Class: 2 3 10 0 25
Error rate: Labeled data belonging
0% to Class:
1 2 3
Data 1 25 0 0
identified as 0 25 0
Class: = 3 {0 0 25
Error rate: Labeled data belonging
8% to Class:
1 2 3
Data 1 25 0 0
identified as 2 |0 21 2
Class: =2 3 10 4 23
Error rate: Labeled data belonging
8% to Class:
1 2 3
Data 1 25 0 0
identified as 0 22 3
Class: = 3 10 3 22

Except for a few isolated trials, no separation is
obtained between classes 2 and 3
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Testing Data Results

Error rate: Labeled data belonging
2.67% to Class:

1 2 3
Data 1 125 0 0
identified as 2 |0 24 1
Class: = 3 10 1 24
Error rate: Labeled data belonging
4% to Class:

1 2 3
Data 1 25 0 0
identified as 2 |0 24 1
Class: = 3 10 2 23
Error rate: Labeled data belonging
6.67% to Class:

1 2 3
Data 1 25 0 0
identified as 2 |0 23 3
Class: = 3 10 2 22
Error rate: Labeled data belonging
6.67% to Class:

1 2 3
Data 1 |25 0 0
identified as 2 |0 24 4
Class: =2 3 |0 1 21




SPAM DATA

CLASSIFICATION

SCHEMES

GDA
Kparam=2; Tol=.001;
ng=200
(2—dim projection)

MBDR
(1-dim projection)
(only 1 non zero
eigenvalue)

PCA
(1-dim projection)

MSNN

PCA
(2-dim projection)

PCA
(10-dim projection)

PCA
(20-dim projection)

PCA
(30-dim projection)

Testing Data Results
Error rate: Labeled data
7.27% belonging to Class:
1 2

Data identified as

1 212 15

Training Data Results
Error rate: Labeled data
3.52% belonging to Class:
1 2
Data identified as 1 219 8
Class: =» 2 8 219
Error rate: Labeled data
6.39% belonging to Class:
1 2
Data identified as | 1 206 8
Class: = 2 |21 219
No separation
Error rate: Labeled data
8.37% belonging to Class:
1 2
Data identified as 1 206 27

Class: = 2 18 209
Error rate: Labeled data
11.01% belonging to Class:
1 2
Data identified as | 1 202 25
Class: =>» 25 202
Error rate: Labeled data
8.37% belonging to Class:
1 2
Data identified as 1 206 27

Class: = 2 21 200
Error rate: Labeled data
18.7% belonging to Class:
1 2
Data identified as 1 174 32

Class: = 2 53 195
Error rate: Labeled data
14.75% belonging to Class:
1 2
Data identified as 1 187 27
Class: = 40 200
Error rate: Labeled data
14.76% belonging to Class:
1 2
Data identified as | 1 187 27

Class: = 2 40 200
Error rate: Labeled data
14.76% belonging to Class:
1 2
Data identified as | 1 187 27

Class: =

2 |40 200

Class: = 2 21 200
Error rate: Labeled data
18.06% belonging to Class:
1 2
Data identified as | 1 177 32
Class: = 50 195
Error rate: Labeled data
14.53% belonging to Class:
1 2
Data identified as 1 187 26
Class: = 40 201
Error rate: Labeled data
15.2% belonging to Class:
1 2
Data identified as | 1 186 28
Class: =>» 41 199
Error rate: Labeled data
15.41% belonging to Class:
1 2
Data identified as 1 186 29
Class: = 41 198
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